

Announcements

OK to import data structures

- Hw2 is available on Gradescope (one coding question and 2 written question. **Due Friday Feb 6 only one late day.**
- **May need to start panini press after the shift ends (problem 2)**

hw1 and quiz1 grades open on Gradescope: **regrade open for one week after grades open**

7³⁰ - 9

→ by Monday

Prelim 1: Thursday, Feb 12. fill out this [form](#), if you have a conflict.

Covers hw1-2, sections week 1-2, lectures through this Wednesday this week.

Monday's class and section next week is review.

Other prelim info and practice questions posted on Canvas, solutions will be posted after sections [\(Tuesday\)](#)

Dynamic programming V: Knapsack

The problem: n items with weight w_i and value v_i

max weight allowed W , items $\{1, 2, \dots, n\}$

The problem select $S \subseteq \{1, \dots, n\}$ such that

$\sum_{i \in S} w_i \leq W \rightarrow$ permitted to take S

Example $W=20$

maximum $\sum_{i \in S} v_i$

#	w	v	v/w
1	15	20	1.33
2	10	15	1.5
3	8	14	1.75
4	7	13	1.86

Optimum $\{2, 3\}$

Ideas to solve Knapsack problems

greedy ideas

1. max value (among $w_i \leq W$) \times see above
2. min weight \times see above
3. min v_i/w_i ; value density \times see above

Dynamic Programming: what are good subproblem for Knapsack?

Order items: f consider last decision
 $1, \dots, n$

What to do with item n

proposed sub problem: $\text{Opt}(i) = \text{optimum items } \{1, \dots, i\}$
max value possible

base case $\text{Opt}(0) = 0$

$\text{Opt}(1) = v_i$ (assuming $w_i \leq w$)

need recurrence

$\text{Opt}(i) = \max (\text{Opt}(i-1), v_i + \text{Opt}?)$

item i [↗]
not included

item i [↗]
included



Join by Web PollEv.com/evatardos772

Does the subproblem proposed work OK?

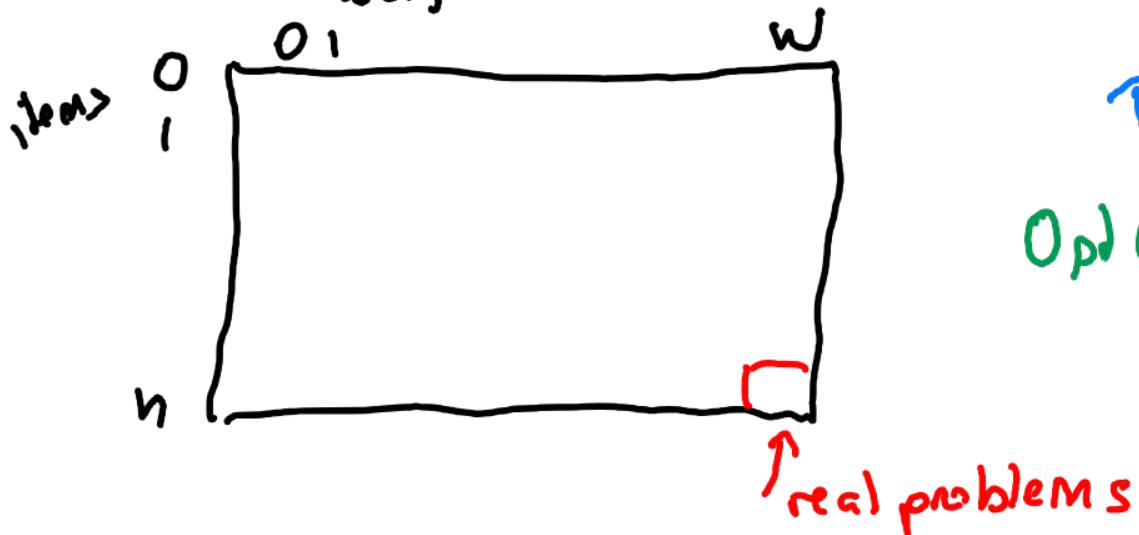
- A. Yes, can be made to work
- B. No, this does not work**
- C. I don't know

$\text{Opt}(i) = \max$ value for
items $\{1, \dots, i\}$

you choose ordering ??

The dynamic program: subproblems, base case and recurrence

$\text{Opt}(i, w)$ = max value possible
weight limit
items $1, \dots, i$ & weight limit w



Assume w integer
& w : all integers

Recurrence:

$$\text{Opt}(i, w) = \max (\text{Opt}(i-1, w), v_i + \text{Opt}(i-1, w - w_i))$$

item i
not included

item i included
assuming
 $w_i \leq w$

The dynamic programming algorithm

$$O_{pt}(0, w) = 0 \text{ all } w$$

$$O_{pt}(i, 0) = 0 \text{ all } i$$

For $i = 1, \dots, n$

For $w = 1, \dots, W$

if $w_i > w$ then

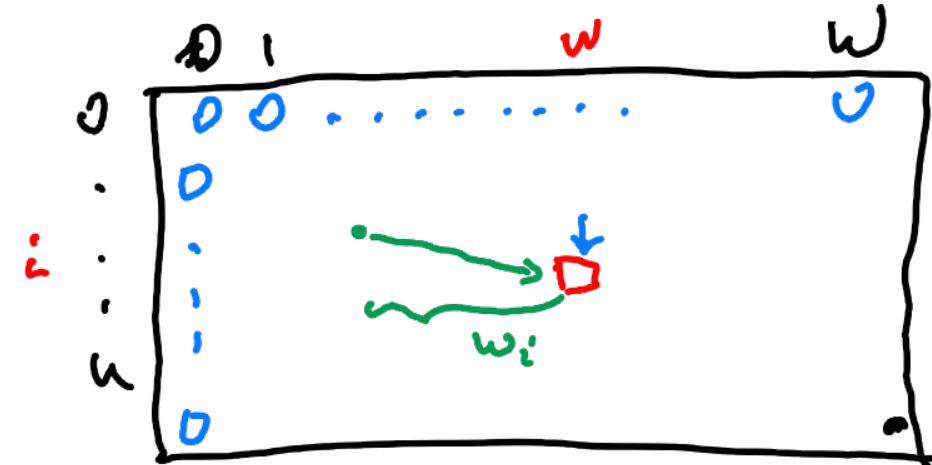
$$O_{pt}(i, w) = O_{pt}(i-1, w)$$

else

$$O_{pt}(i, w) = \max \left[O_{pt}(i-1, w), v_i + O_{pt}(i-1, w - w_i) \right]$$

Return $O_{pt}(n, w)$

Running time: loops n + $W \Rightarrow O(nW)$



Correctness, running time, and extracting the solution

Correctness:

base ? obvious

induction: explain recurrence

include English statement for what Opt is

$\text{Opt}(i, w)$ = max value possible
items $1, \dots, i$ of weight limit w

If time permits: benefit of a recursive solution with

memoization

Recursive version

Compute $\text{Opt}(u, w)$

if $u=0$ or $w=0$

return 0

else if $w_u > w$

check if $\text{Opt}(u-1, w)$ already computed

$\text{Opt}(u-1, w) = X$ & save it

return X

else

check if $\text{Opt}(u-1, w)$ & $\text{Opt}(u-1, w-w_i)$ computed

$\max(\text{Opt}(u-1, w), v_i + \text{Opt}(u-1, w-w_i)) = Y$ & save both

return Y

use hash table
to store computed
values

